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Summary -

A theory of scattering of seismic body waves by

small random spacial fluctuations in density and elastic

parameters in an otherwise spherically symmetrical Earth

model is developed. It is shown that a primary wave

disturbance of either P or S type travelling through

• a slightly irregular solid medium will generate scattered

waves of both P and S types. Explicit formulas are

derived for the mean square amplitudes of P waves scattered

from several different assumed forms of primary P wave .

- The theory assume s that the primary wave may be

locally approximated by a plane wave inside each part of the

• scatterin.g region whose size is comparable with the mean

size of the irregularities present and that ordinary ray

theory may be applied to calculate the travel times and

amplitudes of both primary and scattered waves.

The theory supports the writer ’s earlier suggestion
• 

.
. that observed precursors to the seismic core phase PKIKP

may originate by scattering from the phases PKP1. and PKP2
by irregularities in the vicinity of the Earth ’s mantle—core
boundary.

1 ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~ : ~. ~~~~~~~~ •
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1. Introduction

The writer (Haddon, 1972 ) recently drew attention

to certain inconsistencies between observational data on

so-called precursors tc~ the seismic core phase PKIKP and

corresponding theoretical results entailed by previous

interpretations of the precursors involving one or more

transition layers surrounding the Earth’s inner core. He

j / suggested as an alternative interpretation that the pre-

cursors may originate--by scattering from the main core

phases PKP1 and PKP2 due to irregularities in the

neighbourhood of the mantle-core boundary. Subsequently,

Cleary and Haddon (1972) examined the new interpretation

in some detail and assembled a body of evidence in support.

Further support has recently been provided by Doornbos and

Husebye (1972) from their analysis of precursor wavetrains

Iirecorded at the Norsar seismic array (see Haddon and Cleary ,

1973). More recently, King (1973) has added further weight

to the scattering interpretation with results from his

analysis of precursor wavetrains recorded at the Warramunga

seismic array.

In addition to accounting for precursors to PKIKP,

seismic scattering may also account for several other observed

LJ:i
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seismic “phases ” . For example , Cleary and I~addon (1973)

have suggested that much of the body wave coda following PD

including the so—called precursors to PP observed by Bolt

and colleagues (1968) and others, may result from scattering

in the crust and uppermost part of the upper mantle.

The main objection to the scattering interpretation

raised so far has been that it has not been shown that the

proposed scattering mechanism can account for the observed

amplitudes of the phases in question. It is therefore of

immediate importance to investigate the mechanism quantita-

tively . The present paper is a first step towards this end.

In this paper a simple theory of scattering of

elastic body waves by small random fluctuations in density

and elastic parameters is developed by appropriately

generalising and extending certain aspects of the acoustic

scattering theory given by Chernov (1960). The theory below

not only establishes the plausibility of the proposed

scattering mechanism , but also provides an adequate model

for interpreting observational data quantitatively. For

example, application of the theory has already shown that

observed amplitudes of precursors to PKIKP can be accounted

- 
for by postulating random fluctuations in density and elastic 

-•

parameters of order one per cent in the lowest 200 km of

the mantle. Further numerical details relating to. the

application of the theory will be published in a separate

paper. 

• - ~- - - -- •~~~~~~~-- •~~~~~ - - --



• • 
__ 

_ _ _ _ _ _ _ _ _

2. Basic Equations for Scattering

Let U
1 

(i = 1,2,3) denote the rectangular

cartesian components of displacement of a point P(x1
) in

a perfectly elastic medium in which the density p, incom—

pressibility k, and rigidity i~ vary slightly from their

mean values from point to point. The equations of motion

• for small displacements in such a medium may be written

~~~ ~~~~. ai.~.
p 2 

= ~~ -(uc - .
~~
. 

~.i)O) + ~~_{P{.5~2 + .~
_

2}} , (1)

where 0 = denotes the dilation.
k

The fluctuations in density and elastic parameters

will be denoted by tip, Ak and A~i , so that p = p
0 
+ Ap,

k = k
0 + Ak and p = + Ap, where p0, k0 and p

0 denote

the mean values and it is assumed that ~Ap~ << p0, J A k J << k0

and I A P I << For the present p0, k0 and p0 will be

assumed to be constants. (In later sections, theory developed

• on this basis will be extended to cases where p0, k0 and p
0

are slowly varying functions of distance from the Earth’s

- 
• centre.) Upon substituting for p , k and p in equation (1),

we obtain

• - - •~~~~~ • - - •~~~~ . • -~~~ 
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p
0 

~t
2 

— (k 0 + 4 p0) 
~~~~~~~ 

— p
0
V2u~

32u
= — Ap + (Ak + 4 Ap ) .

~~~~~
-_ + Ap V~~u~ (2)

+ .
~~
-
~~-- (Ak — 

~~~
. Ap )0 + ,~~~~

-_ CAp ) [ .~ 1 + .~ .i}

,/

When Ap, Ak and Ap are all zero the equations

(1) and (2) reduce to the usual equations of motion for a

homogeneous medium. Let u~
0 denote any solution of

equation (2) when Ap, Ak and Ap are all zero and let

H u1 u~
0 + u~

1 denote a corresponding perturbation solution

of equation (2) when Ap, Ak and A p are non-zero. Upon

substituting into equation (2) , assuming that ~~~~~ << u1
01 ,

and ignoring terms of second and higher orders in small

quantities, we obtain

~0 
- (k0 + 4 p~) 

~
}- - p0V

2u~~ = Q.(r,t) , (3)

1 03U
where 01 . k 00 k  

, r=(x.) -
•

Xk Xk )

~J~~A 
_ _ _ _ _ _ _ _ _ _
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and

Q~~(r~ t) = - 
~~~ 
:~~~

° 
+ (Ak + 4 A p )  + A~ V2u~

0

-t (4 )

Taking the divergence and curl of equation (3) gives

~~~~~~~~~ :~ 
- v 2 o1 

= 0 (r, t) , (5)

and

____ — = ‘I’(r ,t) , ( 6 )
B0 ~t

where r = (x
i
) , p

0a0
2 

= k
0 + p0 , p

0~~~
2 

= p 0
i

= curl (ui
’) , 0(r , t)  = div (Q~ )/(Q0

ct~~~)

and !(~
,t) = curl (Q~ )/ (~ 08 0

2 ) .

_ _ _ _ _ _  —$-
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The resultants of the secondary scattered waves

originating from within any region V of the medium are

given by the following solutions of equations (5) and (6)

(see, e.g., Stratton , pp. 424—428).

= 

~ f 
~~~~ 0(r ’ , t ’ ) dV’ , (7 )

= ~L. J ~r ‘1’(r ’ ,t”)dV ’ , (8)

where r ’ = (xi’) denotes the source point, r = (x1) denotes

the field point at which the solutions are to be evaluated

at time t, R’ = 
ft 

- r ’ is the distance between the

source and f ield points and t ’ = t - R’/ci~ and t” = t -

denote retarded times.

The equations (5) , ( 6 ) ,  (7 )  and (8)  show that

under the influence of any primary wave U
1

0
, each element

of the inhomogeneous medium becomes effectively a source of

scattered waves of both P and S types. In the following

we shall restrict attention to scattered waves of P type

originating from primary waves of P type.

- f

_ _ _ _ _ _ _ _ _ _ _  
•
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3. P Wave Scatter~~g from a Primary P Wave by Random

- 
- Inhomogeneities

In general , the primary P wave disturbance may

be represented by

- 

u~
0 

= 
~~~~~~~~~ , Ci = 1,2,3) , ( 9 )

I where ‘~ = ~ (r,t) satisfies the wave equation

j

_i~. .
~-4 — = 

. 

0 . (10)

Upon substituting from equation (9) into equation

(4 ) and using equation (10), we obtain

= (Ak + 4. Ap — ct
0
2Ap )~~~1..

‘
~1 (11)

+ (Ak — 4 ~~~~~~~~ + 2 ( A P )
~~~~~~~~ ~

where the subscripts following the commas denote partial

• differentiations

e.g. . ..
ax~ ax.

2

~~~~~~•~~~~J• • •. ~~~~~~~~~~~~~~~~~~~~~~~~~ Ae~~.. ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
_S~~ AL. ~~~
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I.
We shall now assume that the fluctuations Ap, Ak

• and Ap are given by

Ap/p0 = £11

- - Ak/k0 = mH , (12)

and A p/p
0 

= nH

where 9., m and n are constants and H = 11(r) denotes an

isotropic stationary random function which has a correlation

• function N given by

- N = NCr) = <H (r1)H(r 2)> , (13)

where r here denotes 1r 1 
— 

~2 I~ 
In the present paper we 

. 

-

shall further restrict consideration to the particular case
I 

-

I 
- 

where N is given by

NCr ) exp C— r2/a2) , (14)

where a is a positive constant called the correlation

• -

~ distance which characterises the scale of the random fluctua—

tions in H. It may be noted that the corresponding root

F 
I

• 
.

~ __________________________________________________________________________ -— 
~~~~~~~~~~~~~~~~~~~~~~ —~~~-- - -- - - — . . S~~ !S ..s. ...: . .SA. s...A . r e  .i 
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mean square fluôtuations in Ap , Ak and A p are given by

2 ½
> = £p

0 ,

2 ½
< (Ak) > ink 0 , (15)

2 ½

- 

<(Ap ) > np 0 ,

so that 9.., in and n represent the magnitudes of the root

mean square proportional changes in p , k and p.

Upon substituting from equation (12) into equation

(11) and dividing through by p0ct0
2, we obtain

2~~~• . Q~~(~ 0ci0 ) = 

~~~ 
— 

~~~~~~~~~ + — Y 3 ) H ~~~~~~ +

(16)

I’

where

= (ink0 + 4. np 0)/(p0ct0
2) = in + 4. (n — m)

~
2 = 

- 
(Lk0 + 4 Lp 0 ) / ( p 0~~0

2 ) = £ , (17)

and

13 = 2np 0/ ( p 0c~0
2 ) = 2 n ( B 0/cz0) 2 

.

_________  - • ~~ - - - . ~ - - - ~~~~~~~~~~~~~~~~~~~

i— - ~~ - ~~ - t~~~..L - ~~~~ ~~~~~~~~~~~~~ - . . .
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Taking the divergence of equation (16) gives

0( r , t) = ~~~~~~~~~ + ~~~~~~~~~~ + ~~~~~~~~~~ + ~~~~~~~~~~ (18)

where a1 = — 

~2 
a2 = 2yi 

— 

~2 
‘

a3 
= 13 and a4 = — 13

Multiplying corresponding sides of equation (7)

by their complex conjugates and averaging over the ensemble

of possible distributions of H gives the following expres-

sion for the mean square amplitudes of scattered waves

originating inside the region V.

= 2 f J R ’R” <O (r’,t’)O (r” ,t”)> dV’dV” , (19)

where r ’ = (x1,) and r” = (x1,,) denote the integration

:. 
variables, R ’ = 

ft 
- r’I and R” = - r ” j  denote the

distances from the field to the source points, t’ = t - R’/c~

and t” = t - R ”/ cz0 denote the retarded times and the

overbar on 0(r” ,t”) denotes the complex conjugate.

1
_____ - -f - .  

- . -.— — — - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 1~
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4. The Source Function for Scattered Waves

Upon substituting from equation (18) into equation

(19), we find that the right-hand side of the resulting

equation can be expressed as a sum of integrals , a typical

member of which is

123 (4~ )2 f j a2a3 ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ (20)

j v v
where N is the correlation function given by equation (14)

and the square brackets indicate that appropriate retarded

times are to be taken.

Upon transforming the integration variables in -

each of the integrals like (20) by

2x~~ 25~ + 
~~~~

. ,

j  = 1,2 , 3 (21)

2x
3

,, 2x
3 

—

we obtain, for example ,

‘23 = 

(4~ )2 JJf d~~1d~~2d~~3 JJJ ~~~~~~~~~~~~~~~ 
~~~~~~~ 

d~1d~2d~3

(22)

__________ _ _  _ _  --~~~~~~~~~ -~~~~- - ---  ~~~~~~-~~~~~~~~~ —-

- ——~ --~~~—._ 
________ ~~ .—- ——.. .e - .-.~ .. -~~ - - _.~.•

q 
_ ~ ~~~~~_ ~~~_ _  .~~~~~~~ A.à ~



,- - ——.--

— 1 3 —

• where, by equations (14) and (21), N is now given by

N = exp C— (~ 1
2 

+ ~2
2 

+ ~ 3
2 )/a 2 ] , (23)

and where G23(~~~~~~,x~ ,t) denotes the transformed form of

., ., . , ] [ ~ .,,.,, ] multiplied by a2a3. In equation (22)
-~~ ,3. J ] ,3. J

the domain of integration V for (x1,x2,x3) is identical

with the domains V for (x 1,, x2 1 1 x3 1) and (x 111 ,x211 ,x3~ )

) while the domain V~ for 
~~~~~~~~~ 

depends on 1,X2, X 3~~~

However , because of the presence of either the factor N or

one of its derivatives in the integrands of each of the

integrals like (20), the sum of which comprise the right—hand

side of equation (19), each integrand will become small when

~~ becomes large compared with the correlation distance a.

It follows that if R ’ , R” and the linear dimensions of V

are all large compared with a , then a satisfactory approxi—

mation to integrals like (20) can be obtained by replacing

the factor R’R” by R2, where R2 = — x1) 2 
+ (x2 

- x2 ) 2 
+

(~ 3 
- x3)

2) , and the domain V~ by the infinite domain V •

We thus obtain , for example,

1 d~1d~2d~3 ~
3N —123 = 

(4~ )2 JJJ R 2 JJJ 2 G(xL ,~~L , xj,t ) d E ld~2
d
~3 ‘

-

- 
• 

. 
= 

(4~ ) 2 JJJ ~~~~~~~~~ d~1d~2d~3 , say, (24)

I

1iL~L::1 
____
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where S23 = JJJ ~~~~~~ G(~~~, , x1,t )d~1d~2d~ 3 -

Upon combining the complete set of terms consti tuting

the right-hand side of equation (19), we obtain

= 
1 

2 1 11 - .. d5~1d~2d~ 3 , (25 )
- (4 1T ) JJJ  R

V
• 

~ 4

where S = 
~ 

5mn) m = l n l

It is convenient to refer to S as the source function for

scattered waves.

:1 1

. 1  

-
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5. Approximation of the General Wave Function • by Plane

Waves

. . — — *
For each particular point r = r , say, the

functions S~~ (above) depend (essentially) only on the

values of the wave function ~ within the associated region

of (~1,~~21 E 3) where N and its derivatives are significantly

large. We shall now assume that within each such limited

region ~ can be adequately approximated by a plane wave

j function of the form~

= ~(n.(r — ?) + ct0 (T — t ) )  , (26)

_* * *where r = (x i) ,  r = (L~ ) ,  n = nCr ) denotes a unit

• vector in the direction of the normal to the wavefront passing
_* __* -through the point r , and T = r (r ) denotes the time taken

for a wave to travel from its ori gin 0 to the point

Now let x = Ty denote a transformation of coordi-

nates from the x1 to a new “local” rectangular cartesian

reference frame 01y1y2y3, which has its origin 01 at the

particular point x1 = in x1-space, its y1 axis in

the direction of the vector n and which contains the field

point P in the plane y3 = 0. Since the equations (1) to

~~~~~~~•-~ ~~~~~~~~ _

-

-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
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(19) are all independent of the particular cartesian

reference frame used, these equations apply equally well

when ref erred to a “new ” x1 coordinate system whose axes

coincide with those of the y~ system just introduced . In

the new coordinate system equation (26) becomes

= ~(x1 + cL0 (T — t ) )  , (27)

where t is the time taken for the primary wave to travel

from its point of origin 0. to the origin O1(x~ ) of the

new coordinate system. For the remainder of this section

F the variables x1, x11,  x111, etc . will all be taken to refer

to the new coordinate system, unless stated otherwise.

Corresponding to equation (27 ) the equation (18)

reduces to

2
0(r , t )  = a1HF” + a2 ~~ F’ + a3 ~ 

H F + a4 V 2 HF , (28)
1

where F F(x1 + a 0 (t — t ) )  ~“ (x 1 + cL0 (T — t ) )  denotes

the dilation 00 of the primary wave and the primes on F

and ~ denote differentiations with respect to x1. Upon

substituting into equation (19) and using certain obvious

symmetry properties, we obtain

I 

________

i~J: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~: ~ : ~:; ‘
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= 

(4~~) 2 Re f J R~R~ 
2

a1
2NF 1”F2” + 2a1a2 

~~N F1”~ 2’ + 2a1a3 ~ N F1 F2

- 

xlfl

+ 2a1a4V2
2NF1”~ 2

-
+ a2

2 
~~~~~~~~~~~ 

F3’~~2 ’ + 2a2a3 ~~~~~~~~~~ F1’~~2

j 
- 

+ 2a2a4 ~~X;j I 

V 2
2NF1’~~2

4 - - 

2
+ a3

2 N F1F2 + 2a3a4 —
~~
---

~~~ V2
2NF1~ 23x 1, 3x 11, . ~x1,

+ a4
2v1

2v2
2N~1F2}civ~

dvh1

(29)

- where F1 F(s1), F2 = F(s2), F1’ dF (s1)/d s1, etc.,

• x1, + R ’ + ct 0
(T — t ) ,  S2 = x11, + R” + — t),

and R’- and R” again denote the distances between the

source and field points.

Upon transforming the variables (x 11) and (x~~~)

in equation (29) by the transformation (21) and approximating

R’R” by R2 and V~ by V~,, as before, we obtain

___________ T~~~~~~~~ ~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~‘~~~ m-
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< 1 0 1 2 > = 

( 4 ) 2 JJJ ~~~~ d~ 1d~ 2d~ 3 , (30 )

where

S =

— 2a1a2 
.
~~~~~ .— F1”~~2 ’ + 2a1a3 ~~~2 

F1”~ 2

j 
• 

+ 2a 1a4 V 2NF 1”~~2

— a2
2 !~!-~7 F1’~~2’ + 2a1a3 

~ _-!--~~ F~ ’~~ + 2a2a4 ~~~~~~~~~ 

V 2NF 1’~~2

- • + a 3 ~ 
F1F 2 + 2a3a4 V NF1F2

+ a4
2V2V2NF1~ 2}d~1d~ 2d~ 3 ,

2 2 2 

(31)

- 4 where V2 denotes + + 2 and s and s are

now given by ~~l ~~2 
3~ 3 

1 2

s1 =

(32)

and s2 
=

:-

~ 

___ 
~~~~~~~~~~~~ II*~ J. ~~~~ ~~~~ 1 I T ~~~~ T~~~I~~
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Although the equations (25) and (30) are identical

in form, their derivations show that they have distinctly

different meanings. For, apart from referring to different

coordinate systems, the function 4 given by equation (26)

has been assumed to approximate the general function ~
involved in equation (25) only in the vicinity of the partic-

ular point x1 = in the original coordinate system. In

J respect Qf the functions S given by equations (25) and (31),

however, it is evident that under the assumed circumstances

the value of the function - S given by equation (31) at the -:

point 
~~ 

= 0 in the new coordinate system will approximate

the value of the function S in equation (25) at the point -
•1

= x1 in the original coordinate system to the extent

that the function 1’ given by equation (26) approximates

the general function $ involved in equation (25) inside the

region where N and its derivatives are significant. The —

equation (31) for S evaluated at the point 
~~ 

= 0 there-

fore provides an approximation to the function S in (25)

at the point 
~ 

in the original coordinate system. In the

next section we shall reduce the expression (31) for S to

a simpler analytical form.

~ 

-
• - —_ -• - - - • . -.- .—~..-— — -- —_.- — - •—- ~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~ ~~_ - —~~~~ —‘•—.-.. . .~~~~~~~~.. . -
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6. Transformation of the Source Function Integral

Let r ’ denote the position vector 01P ’ of the

source point P ’ (x 1, )  referred to the local coordinate

system introduced in the previous section , R the distance

01P from the origin 01 to the field point P ( x ~ ) .  n1 a

unit vector in the direction 01P and $ the angle between

• . 
n and n1, as shown in figure 1.

Since I r ’ I << R and 01P is in the plane x3 = 0

(by choice of coordina te system) we find that to suff icient

accuracy

R ’ = R — n 1.r ’ = R — x 11 cos ~~— x 2,sin~~
and similarly (33)

R” = R — n1•r ” = R — x111cos I~ — X2~ Sjfl I~

Transforming these expressions by use of the

equations (21), then substituting into equation (32) and

putt ing x1 = = = 0 we find that

Si = 

~~ l + q~ 2 + cx 0T ’ ,

( 34 )

and S
2 

= — p
~1 

— qE 2 + cz0T ’

S

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - ~~~~ - - —~~~~~~~~~~~~~ -

-~~~~~~~~

-

~~~~~~
_- 

.

~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -
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X 2

P(x ,)

R’

~VVR

DI Zfli
C, 

--
~~~~~~~ 

I

H 
- 

0,

FIG. 1 The local coordinate system for evaluating the source
function S.

U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
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where p = sin2ctl/2 , q = — sin 4/2  cos •/2

and ct0t ’ = R + a
0

( T  - t)

Upon integrating with respect to all those

terms in the ir~tegrand of equation (31) involving derivatives

with respect to we find that all such terms vanish

because F1 and F2 are independent of while N and

its derivatives vanish at the limits of integration. The

equation (31) therefore becomes

S = Re
f f f { 

.

a] NF 1 F2 — 2a 1a2 •~~•!~

7 

F
1

”
~~~ 2

’ + 2a 1a3~~~
N
2 F~ ”P~

- 

+ 2a1a4 ~ 2 + 2 NF1”~ 2

2 a 2 3
— a2 

N F1’~~2’ + 2a2a3 ~ 
N F1’~~2

~l

~ a 2 a 2
+ 2a1a4 •wç~ a 2 + a 2 NF1’~~2

• ~l ~2

+ a3 F1~ 2 + 2a 3a4 
~~~2[a~~

2 +

- 

- 

+ a42[ 
a 4 

+ a~1 a;2 
+ _

~~~~~~
1N F l

F
2}d

~~~
l

d

~~~
2
d

~~~
3 

,

(35)

_ _ _ _  _ _ _  
~~~~~~~~~
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where F1 = F ( s 1) ,  etc .~ and S1 and are given by

equations (34).

Integrating the various terms in equation (35) by

- 
parts with respect to and F~2, as appropriate , and

using the results that

2 2
q 

~
f_ 

~~~~~~~~~~~~ 

= p ~~~~~~~ (F
1
P

2
) ,  q2 ~ 

2 
(F
1~ 2
) = 

2

- 
etc., we obtain -

S Re JJJ N {a]
2

F
1

1I~~
2

1I + 2a1a2 ~E (F
i
”F
:

’)  + 2a1a5 a~1
2 1”F 2 )

. — a2
2 

2 
(P’
1
’~~2

’) — 2a2a5 i-~!g (F
1
’~~2

)
• 

~~~~.

-~~~~ 
- 4

+ a
5

2 

a ~ 
(F1~ 2) d~1d~2d~ 3

1 
(36)

where a5 = (a3 + a4) + a4g
2/p2 and the other symbols are as

F previously defined. -

After some further manipulations using results like

Re JJ(J N ~~~ (F1’~~2”)d~1d~2d~3 = - Re JJJ N ~~~ (F1”~ 2’)d~1d~2d~3

-p

_ _  

I 

• 

-

______ _ - - -  - - • - - -
. -; d

__ -__ —_ -_—_ ---_ -- - - _ --_ - -
• 

- -

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - k~~4 •-.-~. • • ~~_ ‘
--.~~~~. ~~~~~~~~~~~~~~~~~~~ : .~-••—- _
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we f ina l ly  obtain 
-

S = Re f ff N {c1F1”~~2
’1 + c2F1” F2 + c3F1”~ 2}d~1d~2d~3 , (37)

where

c1 = a1
2 

— 2pa2(a1 
— pa 2 ) + 2p2a5(a1 

- 3(pa 2 
— p2a5))

j c2 = 2pa2(a1 
— pa 2 ) + 4p 2a5 (— a1 + 2 (pa2 

— p2a5))

and c3 = 2p 2a5 (a 1 
— (pa 2 

— p2a5 ) )  
:

- (38 )

4 ii

I-

___________________________________  ___~
_;_-

_ _ .  ~~~~~~~~~~~

-- --

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _
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7. Summary

When the general primary wave disturbance •
- (equation (9)) can be adequately approximated by plane waves

- of the form of equation (26) within each subregion of V

whose linear djmensions are of order a, then the mean

I square amplitude of scattered waves originating inside V

I and arriv •ingat the field point P at time t is given
-
~ I ( by equation (25) where the source function S is given by

-
~~ 1 

. equation (37).

~~I.

i.

I ;

______________________ 
~~~~~ ~~~~~~~~~~~ 

_ _ _
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8. Scattering from a Simple Harmonic Primary Wave

In this section we obtain an explicit expression

for the source function S (equation (37)) for the case

when at each fixed poin t r = ~ of the scattering region

V the primary wave can be represented by

0 0 = A
0 exp (iks) , (39 )

where s = n• (r - 

~ ) + cx0(T — t )  and where the unit normal

vector n , the wavenumber k and the amplitude A
0 are

assumed to vary relatively slowly with ~~~, and T = T ( r )

denotes the time taken for the wave to travel from its

• 
source to the point P (~ ), as before. For this case we have

F(s 1) = A0 exp(iks 1) ,

(40 )
4 -  -

- 

I F(s 2 ) = A0 exp(iks2)

p-i • -

where s
~ 

and S
2 

are given by the equations ( 3 4 ) .

V •

Upon substituting from equations (23) and (40) into

equation (37), we obtain 
-

;

— —• —•-— — -_-- -_ •- -••-__-• -_•—- —_--,-_•- — —__ ._ __i__ ~-~ _ •~ t — 
-
~~ 

4. -_ t ~~_~~~1 
- 

., .
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- 

• 

s = Cc1 
— c2 + c3)k

4
IA 0I

2 fff exp (~ (~~l
2 

+ ~~~
2

2 
+

+ 2ik (p~1 + 
2 ) ) d ~~~

1
~~~~~~

2
~~~~~~

3 
, -

- = (C
1 

- c2 + c3 )k 4 I A 0 I
2a 3 (~~~)~~exp(- k 2a 2sin 2 +/2)  . (40)

From the equations (18) and (38) we find that

(c
1 

- c2 + c3) = (a1 
— 2pa2 + 4p2a5)

2

= — 

~“2~ • — y3sin 2q)2

= , say , (4 1)

where 
~1’ “2 

and 13 are given by the equations (17).

Substituting for S from equation (40) into
equation (25), we obtain

• I 2 2 4 3
j < 1 0 1

2
> = 

1 r A
0 k 

exp (— k2a2sin2~ /2 )dV , ( 4 2 )
l6V’

~~v 
R

where dV denotes d~1d~ 2d~3.

0

• 

I 
_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  

____

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~ ~~~~ .~~ ~~~~~
-
~~~~~~

• 
_ _
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When 1A
0

1 ,  R, ~~~, etc., vary significantly throughout

• the region V , the equation (42) would generally need to be

evaluated numerically. If , however , equation (3 9)  adequately

represents the primary wave throughout the whole of V with

k , A0, and n all practically constant, and if also R is

large compared with the linear dimensions of V, then the

integrand of (42) will be practically constant and we

• immediately obtain

2 Vr lA 0l k a  2 2 2• < 1 0 1  > = 2 exp (— k a sin 41/2) , (43 )
16~/WR

where V here denotes the volume of the scatterin g region.

For the particular case of a f luid medium the

equation (43)  reduces to agreement with a corresponding

result given by Chernov (p. 52).

I

- -  I • .~ 
___________ ____ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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9. Scattering from a Random Primary Wave

The observed wavetrain following P frequently

appears to have a random phase character. In the present

section we therefore consider the scattering from a primary

wave which at each fixed point r = ~ of the scattering

region V can be represented by 
-

00 = A0F(s) , ( 4 4 )

S 
where s = n. (r  — i~) + — t), as before, A0 denotes the

root mean square amplitude, and where F here denotes a

real stationary random function with a correlation function

• M given by

M = <F(s1) F ( s 2)> = exp (— (s1 — s2)
2/A 2

) . (45)

In this equation A denotes the correlation parameter

characterising the range and distribution of wavelengths

in the signal.

4 Taking the statistical average of equation (37)

over the ensemble of random functions F and using (45 ) ,
we obtain

- - - ~~~~~~
- -~~~~:~~

‘ I~~~~~~
. .  

~~~~~~~~~ ‘ I ~~~~~~~
• •
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<S> = A
0
2 fJJ N {ci 

a 2 + 
~~~2 a:~~s2 

+ 
~~~ 3. :~~~ }d~ la

~ 2a
~ 3

= Cc 1 — c2 + c3) A 0
2 JfJ N ~~~~~~~~~ d~ 1d~ 2d~ 3 , (46 )

where and s2 are given by the equations (34) and

S = S
1 

— -S 2.

Substituting for M and N from equations (23)

and (45)  and using ( 3 4 ) ,  we obtain

2 2
= 

A 4 I1~ 
— 12s2/X 2 

+ 4s4/A 4 )
V (4 7 )

x exp [_ (~ l
2 

+ 

~2 
+ ~3

2)/a2 - s2/x 2 }d~ 1d~ 2d~ 3

where s = 2p~ 1 + 2q~ 2 .

Changing variables in equation (47) by

• - 
u = sin 41/2 — 

~2 
cos 41/2

v = 

~l 
cos 41/2 + 

~2 
sin 41/2 , (4 8 )

w =

~~~~~~ ~~~~~~~ , 
- - 

- 
- - - - - - -

~~~
- - -

~~~~~
-

~~~~~~
- - - -,,--~ — ~~

- ..-.- —
—- __i_ _~~~~ - —‘55—— --—— — •-• ---—- —

~ —A .~~ . a s 1  s~~~~~~— - ~ ._.L~~~ • _ _ ‘5 ~~~~~~~~~~ tii&Zk ~ - .!~~ si~~~~~ - — ~IL1~h~
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we obtain -

= 

4r2A
0
2 

~ 

(3 - 48pu2/X 2 
+ 64p2u4/A 4)

V~~ (49)

x exp (_ u2(_~. + - ~v
2 

+ w2),a2}dudvdw

Integrating (49) gives

J 
<S>

_ 
- 

= - 

12r2A0
2(/;)3a3 

5/2 ‘ (50)

~~ 
(i. + _.!~~ _ sin

— and substituting into equation (25) gives

2 2 3
3 1  r A ~~a

= — 

J 

dV - (51)

V R~ A~~(l + 
4
2 
s1n241/2)

- I  -

As in the previous section, if the integrand of

this expression varies significantly throughout the region

V, then the expression would generally need to be evaluated

numerically. If the integrand remains practically constant

throughout V then we obtain

~~~~~ 2 3

2 
.,v~

< 0 >  2 5 2 ’  (52)
4vITR2A 4[1 + S±~i~~_ sin2~/2) 

-

where V again denotes the volume of the scattering region. 

~~~~~~~~~~~ • S:~~~~~~~~~~ .4 .  ~
-

~~~~~~~~
•:-

~. ~~ , - - -
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10. Scattering from a Wavepacket of Finite Length

We here consider scattering from a primary wave

disturbance of the form

F( s) = A0E ( s ) G ( s )  , (53)

where s = n • (r — r) + a
0( t  - t ) ,  E ( s )  represents the

envelope shape of the wavepacket and A0G(s) represents

either the simple harmonic wavetrain given by equation (39)

j or the random wavetrain given by equation ( 4 4 ) .  Differen-

tiating equation (53) gives -

F’ Cs) = + 
E ’ ( s) / [G’ (s)})AE (S)GD Cs) . (54)

If E(s) is a relatively slowly varying function compared

with G(s) we may approximate in equations such as (54) by

neglecting the derivatives of E(s). For example , if

E(s) = e 5 ~~ and G(s) = ~~~~ then the second term in

the brackets in equation (54) will generally be less than

, which is relatively small compared with unity whenever

the wavepacket contains several cycles.

Under the assumed circumstances we readily obtain

-

. 

S 

-

~ 

_______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~. • . 
— - 

- — 
-



< 1 0 1
2

> = 
l f exp(- k2c2sin241/2)dV (~~~~~~~ )

4 

16/W V R -

and

2 2 3
~ I A

0
E a

< 0 >  = -.-

~~

---

J 

— dv , (56)

- 
V R~~ A~~~ (l + 

~
!2

2~~ 
sin2,/2)

5”2

- corresponding to the equations (42) and (5-1), respectively,

- where E E(cz0t ’) and a.~r ’ = R + a
0
(t - t ).  It  may be

noted that the integrands of equations (55) and (56) are I
-

~~ significant only in those parts of V where E(cx0T’) is

significant. The scattering region may therefore be taken

infinite when appropriate. I

4 -

•‘

. 

•

~ 

1 -

-~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - S~~~~ •.: _ _ _
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11. Scattering from a Pulse-Like Primary Wave

As a f ina l  example of the application of equation

(37), we consider the scattering from a primary wave pulse

which at each fixed point r i of the scattering region

can be represented by

= A0 exp(— s
2/A 2) , (57)

j
where s = n.(r - 

~~~~) 
+ ct 0 (i - t) and A here characterises

the length of the pulse. In this case we must evaluate

equation (37) with

• F1 = F(s1) = A0 exp(— s1
2/A 2) ,

- (58)

and F2 = F ( s 2 ) = 

~~ 
exp(- s2

2/A 2) ,

I 

- 
where and s2 are given by the equations ( 3 4 ) .

Consider, for example, the integration of the first

term in the integrand of the expression (37).

I

~~~~~~~~~~ • -~~~~~~~ -~~~~~
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-

S 

= NF 1”F2”d~ 1d~ 2d~ 3

= 

~~~~ JJf [
~ 

2 + 
4s~

2}[ 2 + 
4
~~2}exp (_ (~i

2 
+ 

~2 
+ ~3

2)/a2

- 
-• ~~ 

+ s2
2)/A 2}d~1d~2d~3

- (59)

Changing variables to u, v, w by using the equations

(48) gives - 
-

Ii = .4— expC— 2X 2
)J J J  {

4 - 
l 6{~~~~~~

_ if x2} + 16{p ~~ - ~px
2u2 + x4J

x exp{_ , [ .s2~. + ~~ Ju
2 

- (v2 + w 2 )/a 2)dudvdw

- 
(60)

____ 
2where ~~ 

= 
A 

p = sin 41/2 and ct0~~’ = R + c10 (T - t )

Now integrating with respect to u, v and w gives

• - 4C/;)3a3A0
2exp(— 2X2) 2 2 2

1 = 

A 4Y5’2 
(1 — 2X ) + Y ( l  — Y) (1 + 2X2)

(61)

- 

- 

+ 3P2a4/A 4}

where Y = 1 + 
~~~
2

2_ sifl2$/2.

~~~~~~ 

— 
_——• . - - _ —:--_--_ — - - —_—— -_- -—- — --5 — r -r——— —- - ——— -—----- - --

~
—-.-— 

~~~~ 
-
~~~

- -
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Upon similarly integrating the other terms in

equation (37) and combining , we obtain

4 (/ ;) 3o 3A0
2 

2 4 2S = 

~~~4 5 / 2 exp (— 2X ) (g1X + g2X + g3) , ( 62 )

where g1 = 4a1
2Y2 ,

g2 = C- 6a1~ Y 2 
+ 2Y(c1 - 3c3)) , (63)-

i j

g3 = (1 — Y ) 2F2 + ~~ C2Y~ + (c1 
- c2 + 3c3)Y , J

t - 

•

.
and X and Y have the same meanings as in equations (60)  and

(61).

- By equations (25)  and ( 6 2 )  the resultant mean square
I

1 amplitude of scattered waves arriving at P from V is given •

-

~ by

= c 
a3A0

2(g1X
4 + g 2X

2 
+ cj

3
) 
exp(— 2X2)dV . (64)

R A Y ~~
2

I

H~~~~~~~~~~. 

_ 
_  _-5--.; —~T_ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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12. Application of Scattering Theory to Spherically

Symmetrical Earth Models

Consider an Earth model which is spherically

- symmetrical except for small random fluctuations in the

- density and elastic parameters inside a certain region V.

Let p0,. k0, ~~~~
‘ ~o and B0 denote the mean density,

incompressibility, rigidity and P and 
- 
S velocities at

5 distance r from the centre of the model. In the present

section we shall derive a formula for the resulting P type

scattering when a primary P wave propagates through the

irregular region V. We shall assume that the primary wave

originates from a spherically symmetrical point source A

and that ordinary ray theory (see, e.g., Bullen (1963),

chapters 7 and 8) -may be applied to calculate travel times

and amplitudes of both the primary wave and the secondary

• 
- scattered waves excited by the primary wave.

Let I denote the energy in the primary wave

emitted per unit solid angle from the source A and let eA
be the angle which any ray makes with the level surface r =

• through A (see figure 2). Then the energy E per unit

area of the portion of the wavefront emerging at an angle eB
to the level surface r = rB through any point B is given

• by (Bullen, p. 126)

- -5-
--5 -5— ..• -

~‘ I  -5 _ 4 S S• _ a * ‘
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H

Fig. 2 The primary wave ray AB and the scattered wave ray BC for
a primary source A , a scattering point B and a receiver C in
a spherically symmetrical earth model: x is the angle of inter-
section of the diametral planes containing AS and BC e

A I eB~ 
eBand e

~ 
are the angles at which the rays intersect the level

S surfaces through A , B and C.

I
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cos e de
— I A A (65)— sin eB sin ~~~ 

d
~AB

where 
~AB 

denotes the angle AOB subtended by A and B

at the centre - 0 of the model and the range eA to eA + deA

corresponds to the range A~~ to + dt~AB.

For a simple harmonic wavetrain the amplitude A

of the wave is related -to the energy E per unit area of

wavefront by (Bullen, p. 128) 
-

A2 
= f . E  , ( 6 6 )

where the factor f depends on the wavelength and period of

S the wave and the density of the medium. A similar relation-

ship holds generally for plane waves of similar waveforms.

From equations (65) and (66)  we obtain

2 cos eA deAAB = ;-~~
2• Sin eB sin ~AB 

dt
~AB 

~ (67)

where AB is the amplitude of the primary wave at B and

is the value of the factor f at B. The expression (67)

will be applied shortly to give the amplitude of the primary

wave in scattering formulas such as (55), (56) and (64). We

shall f i rs t  consider effects  of the model’ s velocity structure

on amplitudes of scattered waves.

L - -— I - -  - - 
~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~
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• The equations (55) ( 56)  and (64)  can all be written

in the form

2 — 
_ 1 ç S1~V< 0  > 

2 L  2 ’(4iT ) V R

where t~V represents an infinitesimal volume element of V.

- 

- The resultant of the scattered waves arriving at the field

point P may thus be regarded as the sum of contributions

orig inating in the volume elements t~V comprising V. The

contribu tion from a single element 1~V may be represented by

<
~
o2> = 2 

- (69) . -

(4 , TR)

The energy per unit area of wavefront arriving at

the field point P from ~V is given by

L~E = - 
SAV 

- (70)

This contribution may be regarded as coming from a point

source B within t~V which emits S1
~V/(fB

x (4tr )2) units of

energy per unit solid angle in the direction BP. The

equations ( 5 5 ) ,  (56)  and (57) all apply only to the case

where p 0, k0 and p 0 are all constants throughout the

a.’
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region connecting B and P. We shall now extend these

S results to the case of a spherically symmetrical model where

p 0, k
0 

and p0 vary with r.

If a point source of intensity SAV/(fBx (41T)
2)

were located at ,a point B in a spherically symmetrical

model then the energy 
~
Ec per unit area -of wavefront

originating at B and passing through a field point C

would be given by (cf. Bullen, p. 126)

cot e ‘ d2T
— S~V -B BC

- - 

.
-

- 

C 
— 

(4~)
2fr 2 sin e~ ri 

~BC d
~

2
sc

where eB’ is the angle which any ray leaving B makes with

- , the level surface r = rB through B, e
~ 

is the angle which

this ray makes with the level surface r = r
~ 

through C,

T
~c 

is the travel time of a wave travelling from B to C

along the ray, 
~BC 

is the angle BOC subtended by B and

C at the centre 0 of the model and 
~B 

= rB/czB. Thus in

- order to allow for geometrical focusing effects associated - 
-

• 
with velocity structure in the Earth model we must replace

the equation (70) by the equation (71). The corresponding

contribution to the mean square amplitude of the waves

arriving at C is then given by

- i .

__L -.~~~~z~ - —-5- - - - - --- - - - - .  - - -  - - -- _ _

-5- --S----------- — - 4



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- T - ---

~~~ -- -
~~~~~ 

-

— 4 2 —

fSt~V cot e ‘ d2T

S 

— 

(4rr )2fBrC
2flB sin e

~ 
sin 

~BC 
d
~
2
BC

where is the value of the factor f at C. The

resultant mean square amplitude at C from all the elementary

sources t~V then becomes

2 1 ~ 
f
~ 

cot eB d2TBc<0 > = 2 J 2 2 SdV , (73)

~ ~~~~ ~~~B 

sin e
~ 

Sin 
~BC 

dt~ BC

J where S denotes the source function appropriate to the

particular primary wave assumed (e.g. equations (40), (50)

or (62)).

The equation (73) will now be referred to a coordi-

nate system which is particularly suitable for numerical

evaluation of the integral. Let 
~B 

denote the angle

between any fixed diarnetral reference plane passing through

-
~~ A , and the diametral plane passing through the focal point

A and the scattering point B. We shall take as independent

variables pB~ eA and rB. (The particular advantage of

this coordinate system is that the surfaces defined by

41B = g,~, ~B 
= 

~~2’ eA = e1 and eA = e2 def ine  a tube of

rays emerging from the focus A.) In the coordinate system

taken the volume element dVB bounded by the surfaces 41B’
- 

~
‘B + d41B, eA, eA + deA, rB and rB + drB is given by

______________ ___________ ~~~~~~~~~ 
_ _ _ _ _ _
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. dVB = rB ~~~~ ~~~
d
~AB

d
~PB

drB ‘

where ~~~~ corresponds to deA. Combining equations (67)

and (74) gives

cos e
AB

2dVB = 

~B
’ sin e deAd4Bdr B

Finally, writing S = S
8

A
3

2 and substituting into equation

J (73) gives

-
- 

- 
S 

- 
/

- 
- 

f I - cos e cot e ‘ d
2

T

<o 2 > = 

(4,~)
2r

-5
~ JjJ 

~B 
sin eB sin eC sin ~BC d~

2
:c 

sBdeAd*BdrB ‘

S 
- ( 7 6 )

where the domain V1 for (eA,1PB,rB) corresponds with the

- domain V for

~

I 
______________ __________ _____________________________ ____________ __________________________________________________

~~~~ 

_J ~ - ______ - - - ~~~~~ —- A A



13.  Scattering from Wavepackets in a Spherically Symmetrical

Mode l

For scattering from a wavepacket of the form of

equation (53), where A0G(s) is given by either equation

(39) or (44), the equation (76) gives 
-

- 

o 2 > — ~C
’ 

~~ 
r2(E(a0T’)]

2k4a~ cos eA cot eB’
— 

l6v’~ir 
2 ~~ ~B 

s~fl eB sin e~ sin ABCC V1
$ 

- 

0 (77)

x k2a2sin 2
~
/2)deAd~

)
BdrB ~

and

2 3
~~
’ 111 r 2 [E (a 0t ’ ) J 2a 3 a

< 0 >  = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4/
~
ir
~
2 

~~ ~B 
A [1  + sin 2q/2)

5”2

(78)

cos eA cot e8 d2TBC
sin e8 sin eLsin ABC dA 2BC 

deAdlpBdrB

corresponding to equations (55) and (56) respectively, where
r ’ is now given by

= TAB + TBC t , (79)

~~~iI

and denotes the P velocity at the point (eA,~I B, rB).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~~~~~Li~~ “~~
_ I 

-
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While equations (77) and (78) are in an ideal

form for numerical integration in some applications, in

others where scattering may occur at or near the lowest

points of the primary wave rays, it is more suitable to

- 
change from the variable rB to 53~ where $3 denotes

the length of the ray path from A to B. This trans—

formation may be accomplished simply by substituting dsB

for

An outline of a procedure suitable for evaluating

the integrals (77) and (78) will be given in §15. 

~~~~~~~~~~~~~~~~~~ _ _ _
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14.  Scattering from a Pulse-Like Primary Wave in a

- i Spherically Symmetrical Model

- 
In this case the mean square amplitude of scattered

waves at P is given by substituting from equation (62)

into equation (76). We thus obtain

<e 2> J~J ~[g1x~ + g
2x
2 + g3}exp(_ 2X2)deAd~B

drfl , (80)

V1

j  where - 
- -

= 
~~~~~~~~~~~~~~~ 

cos eA cOt eB d2TBC - 

(81)
- 

4,1~A 4Y5”2 rC nB S~~~•fl e3 sin e~ sin ABC dA 28c

- and where X is now given by

-~ 
-
- 

x = 
~~~~~~~

(TAB + TBC - t) . ( 82 )

I 
-

- In general, if for a particular observation point

C and a particular time t under consideration, the

— 

- associated values of the scattering angle 4 are small to
- 

moderate, then it happens that X varies only relatively

- 
H slowly throughout the region V. In such circumstances the

integrand of (80) would therefore vary only slowly throughout

a 
-

:~~~;. :;~~~~~ ~~~~~~~~~~~~~
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V so th~ integral can be evaluated numerically using the

same procedure as for the integrals (77) and (78) (to be

outlined in §15).

For larger values of •, however, X will change

more rapidly and the main contribution to the integral will

come from that limited part of V where X2 < 1. Under

these circumstances it is advantageous to integrate over X

analytically as follows.

We first change the integration variables in (80)

from (eA,~J B,rB) to (eA,tI
~B,

sB) where SB denotes the

length of the ray from A to B. The expression (
~3 then

becomes

<e2> = JJJ ~{g~x~ + g2X
2 

+ g3}exp (_ 2X2)sin eBdeAd~
)
BdsB . (82)

Now let 01 denote a point on the ray defined by (eA ,4 3)

at which r ’ = 0 (equation (79)), and let O1xyz denote

a local rectangular cartesian coordinate system which has

its origin at the point 01, its x-axis in the direction of

the ray passing through 01 and which contains the field

point P in the plane z = 0. We shall suppose that the ray

through 01 may be treated as coinciding with the x-axis in

I

~ 

T T . ~~ - - - - - . - . ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~:IT~
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an interval -a < x < b, to be specified shortly, and that

in the same interval the pencil of rays defined by the
deA deA d~j’5 d~P3ranges eA 

- —~~-- to eA + and 11)3 
- —~~— to + —~ .—

may be treated as parallel. We now replace ds3 by dx in

equation (82) and integrate along the elementary pencil from

x = -a to x , +b. The corresponding contribution to the

integral (82) is then given by

d<02> = 

S

{x=b 
j(g1x

4 + g2x
2 

+ g3)exp (_ 2X2)dx}sin eBdeAd~B 
. ( 83)

x=-a - 

-

Since by choice of Oi we have TAO + T0 ~~ 
- t = 0, the

1 1
equation (82) gives, to sufficient accuracy,

= ~~~[(T~~ 
- T

A O )  
+ [T3~ 

- T
0 cJ}

= .
~.[x

_ (x cos~~~+ y s i n~~)},

5 -I
l = 2(px + qy)/X , ( 84 )

where p = sin2~/2 and q = — sin ~/2 cos ~/2 (cf. equation

(34)). Changing the integration variable from x to X in

equation (83) by use of (84), we obtain

x=~~
= ~~(g1X

4 
+ g2x

2 
+ g3}exp(_ 2X2)dX sin eBdeAd~1)B ~

x=-~~~

(85)

- 
. 

- - - - - __________________________ - - — - r r . I • - - - — —
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where we have set y = 0 in equation (84) (since the pencil

of rays is indefinitely thin). Approximating further by

treating J sin eB, p, g1, g2 and g3 as constant on the

interval -a < x < b and integrating (85) with respect to

X , we obtain

- d<0 2 > = K(a,b) sin e3 deAd~B , (86)

where -

J

K(a,b) = g
l{ 

3
~~~2 1erf [2

3
~

2
~~~) + erf(2~~~~~

)}

- ~~[a exp [_ 8P2a
2) 

+ b exp (_ 8P2b2

}}

- 3.~~~{a
3 exp (_ 8P 2a2

} + b~ exp [_ 8P
2b2

}}}

+ g
2{ 

~~,2(erf(2
3
~
2
~~
} 

+ erf(2
~~~~~}1

- ~~{a exp (- 
8P2a

2) 
+ b exp (- 

822
b

2

}j }

+ g
3{ 

~~
,2[erf[2

3
~
2
~~

J 
+ erf [2 ~}]} ~ ( 8 7 ) .

I -

and where J sin e3, p, g1, g2 and g3 are to be evaluated

at the point 01.

__________ - - . ~~~~~~ ~~~~~~~~~~~~~~~~~
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So far, the range (-a,b) has not been defined.

It should first be noted that no matter how large a and b

are taken , the contributions to the integral (83) from outside

the range —A/(2 sin2~/2) < x < A/(2 sin24/2) are negligible.

We need therefore be concerned with defining a and b only

in cases where it is appropriate to take a or b less than

A/ (2 sin2~/2). Such cases may arise when the region V

containing the irregularities is limited in extent (as, for

j example, where- V is a concentric spherical shell r1 < r < r2).

It is then appropriate to take a and b so that x = -a

and x = b correspond to the points of entry and exit of the

ray (eAs~1)B) to and from the region V. Upon combining the

contributions (86) from all the ray pencils, equation (80)

becomes

2 ~~ 
XJ K(a,b) sin e3 deAdlpB< 0 > = 

j J  2p , (88)
E

where in general a = a(e A, 11)B ) and b = b (eA ,113) and E

denotes the domain of (eA ,lpB
) corresponding to V1.

If the dimensions of V and the magnitude of *~i

are such that 2pa/A and 2pb/A exceed unity, then we may

approximate by taking a and b -‘~ ~~. Equation (87)

then becomes S

I 

~~~ 
-

~~~~
. - .~~~ —. ~: : ~:~~~



K(a,b) 
~ ~~~~ 

g1 + 

~ 2~~~’~~ 

g2 + 

2~~~ 
g3 , (89)

which, upon substituting from equations (36), (38), (41) and -

(63), becomes

-
, K(a,b) = 

~~
- ,/‘j r~ (90)

where (remarkably!) the factor P2 (equation (41)) is the

same factor as appears in the scattering formulas for simple

harmonic and random primary waves.

If the above conditions are satisfied for all

(eA,lpB) inside any domain E(eA,113), then by equations (81),

(88) and (90) the scattering from that part of V inter-

cepted by the tube of rays defined by Z is given by

f I • 2 3 cos e cot e ‘ d2T
:

1 

- < > = 

32/ ~~ 
~~~~~ 

sin e
~ 

sin ABC dA 2
~c 

eA ~B ‘

where the point B is here to be taken as the point on the

ray (e~ ,~’3) where t ’ = 0 (equation (79)).

— I ~~ - . .  - - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_ - - -- —- -  - - - -— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~-~~~ - - - — 
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to determine TAB, AAB and e3. 
-

(5) The epicentral distance ABC from the

scattering point B to the observation point C is then
given by

cos A BC = cos A cos + sin A sin AAB cos 
~B • (92)

-
fl 

(6) Ordinary ray theory is then applied to

determine the travel -time 
- 
TBC, the angles of emergence

eB and eC and d2Tsc/dA 2
3c, corresponding to ABC and r3.

(7) The angle x between the diametral planes

containing the primary wave ray AB and the scattered wave

ray BC (see figure 3) is given by

cos AAB cos ABC - cos A
cos )( = sin sin A BC 

(93 )

(8) The angle *~i between the direction of the

primary wave ray at B and the associated scattered wave ray
I

- is given by

COS 41 = S1•fl eB sin eB’ + COS eB cos eB ’ Cos 
~ . (94)

I I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~ - ~. a
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/
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-

Fig. 3 Diametral planes and angles associated with the source A , the
receiver C and a scattering point B.
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(9) The integrands of equations such as (77), (78),

(80), etc., are thus determined numerically at each point of

V and hence the integrals may be determined , apart from the

multiplicative factor

In practical applications it will usually be

convenient to compare the amplitudes of scattered waves

with the amplitudes of the associated direct waves at the

Earth’s surface. If, in equation (67), the point B is

taken to coincide with a point D at the surface, then we

obtain 
-

- 

A 2 — ~~~~~~~~~ ~~~ e~ deA
D 

— 

rD Si• fl eD Sin AAD 
dAAD

- 
~~~~ 

cot e d2T D-
= 

A A
rD ~A 

sin eD sin AAD dA AD

Since = the equations for scattered wave amplitudes,

and also the equation (95) for direct wave amplitudes all

contain the factor 
~~C
’
~
• The relative amplitudes are

therefore independent of this factor.

- 

- 
A further point to be noted is that if either the

primary wave or the resulting scattered waves pass through

- _  
interior boundaries at which discontinuities in p0, k0 or 

.

- - :. ~~~~~~~ ~~~ 
- 
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I occur, then the amplitudes should be modified appro-

I priately to take account of energy losses by reflection and

- conversion from P to S. In some applications allowance
- for attenuation effects would also need to be made.

~~~

fl 

I - 
-

5 

- 
- 

- 

-

.
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16. Concluding Remarks

- 

In deriving the various equations given in this

paper , a number of approximations and simplifying assump-

tions have been made. In each particular application it

will therefore generally be necessary to consider whether

or not the various approximations made are satisfactory .

In general, it is to be expected that the theory will give

reliable results whenever the primary wave may be reasonably

approximated by a plane wave in each part of the scattering

region whose linear dimensions are äomparable with the

characteristic size of the postulated inhomogeneities. - For

short period waves this will usually be the case except

near caustics and geometrical shadow boundaries. Even in

these exceptional cases it is not unreasonable to expect

on physical grounds that formulas such as (77), (78) and (91)

will provide satisfactory first approximations of scattered

wave amplitudes. In this connection it is notable that in

applications involving scattering from the vicinity of

caustics, the integrands of equations (77) and (78) are not

singular in spite of the infinite amplitudes associated with

caustics on simple ray theory. In fact, equations (77) and

- . - (78) show that on the theory given, the scattering amplitudes
- - 

- associated with any particular ray tube leaving the source

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- ~
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; I
are (almost) independent of variations in the cross-sectional

area of the ray tube along its length.

The above theory has been applied to calculate

amplitudes of waves scattered from PKP waves in the lowest

200 km of the. mantle. The results show that fluctuations

in density and - elastic parameters of order one per cent in
- 

that region fully account for the observed amplitudes of

precursors to PKIKP. Although, as indicated above, the

results on scattering from the vicinity of caustics need to

be treated with some caution, in the case of PKP the

numerical calculations give practically the same amplitudes

for waves scattered from P before entering the core as

for waves scattered from PKP after leaving the core. The

plane wave approximation used in this paper should be fully

satisfactory in the former case at least, which is sufficient

to establish the plausibility of the scattering mechanism.

Further details on application of the theory to the PKIKP

precursor problem will be published in a separate paper.

~~
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